What is crystallization?

Crystallization is the process of formation of solid crystals precipitating from either a solution or directly from a gas phase.

In other words, crystallization is defined as a process by which a chemical is converted from a liquid solution into a solid crystalline state. In industrial applications, the widespread use of crystallization due to the fact that crystallization acts as both a separation and purification step.

Needless to say, almost all chemical processes utilize at least one crystallization step (if not both). But crystalization itself is not a chemical reaction. The process of crystallization is actually a physical change.

In chemistry for example, recrystallization is a technique used to purify chemicals. By dissolving both impurities and a compound in an appropriate solvent, either the desired compound or impurities can be removed from the solution, leaving the other behind.

Crystallization occurs in two major steps, namely:

  1. Nucleation, and
  2. Crystal Growth

In nucleation, there is appearance of a crystalline phase from either a super-cooled liquid or a supersaturated solvent. Molecules gather together in clusters in a defined manner. These clusters need to be stable under experimental conditions to reach the “critical cluster size” or they tend to redissolve. It is at this point in the crystallization process that defines the crystal structure.

The second step, known as crystal growth, is the increase in the size of particles and leads to a crystal state. Here, the nuclei that have successfully achieved the “critical cluster size” begin to increase in size. Crystal growth is a dynamic process, with atoms precipitating from solution and becoming redissolved. Supersaturation and supercooling are two of the most common driving forces behind crystal formation.







  1. Difference between a Turbo and Positive Displacement Blower
  2. The Difference between Methane and Natural Gas
  3. First Dairy Biogas Project in Connecticut
  4. Does Renewable Natural Gas Have a Future in Energy?
  5. Biogas Offtake Opportunities For Digesters
  6. Wisconsin Dairy Begins Production of Renewable Natural Gas
  7. Anaerobic Digestion Sector Forming a Clearer Picture
  8. Brightmark to Expand Western New York Dairy Biogas Project
  9. Biogas - The Energy Wonder That's Under Our Noses
  10. Power Generation Achieved by a Self-Assembled Biofuel Cell
  11. Less Carbon Dioxide from Natural Gas
  12. Project Uses Renewable Electricity for RNG Production
  13. Smithfield Hog Farm Provides Natural Gas to Missouri City
  14. From Waste to Gas
  15. Gas Clash Threatens Australian Export
  16. Maximizing Opportunities of Anaerobic Digestion from Wastewater
  17. Catalyst to Speed up Conversion of Biomass to Biofuel
  18. How It Works: Ethanol
  19. Anaerobic Digestion - the Next Big Renewable Energy Source
  20. Anaerobic Additions
  21. Three (3) Tech Solutions for Modern Landfills
  22. The Costs and Benefits of Anaerobic Digesters
  23. Bacteria Farts Power Wastewater Plant in Fort Wayne
  24. Europe’s First Poultry Manure Biogas Plant
  25. Electricity Using Pig Manure
  26. $38-Million Biodigester coming to Grand Rapids
  27. Biochar Could Benefit Anaerobic Digestion of Animal Manure
  28. Getting More out of Anaerobic Digestion
  29. Biogas prevents 20 million tonnes of CO2 emissions per year
  30. Converting to green gas grid ‘could be vital’


For additonal reading, please visit us at: News Worthy

Difference between a Turbo and Positive Displacement Blower