fbpx

Tri-Lobe and Twin-Lobe

Blower Working Principle

TriLobe

Tri-Lobe Rotary Compressors/Blowers and Twin-Lobe Compressors/Blowers Blowers are positive displacement units, whose pumping capacity is determined by size, operating speed and pressure conditions.

It employs two Tri-lobe impellers mounted on parallel shafts, rotating in opposite directions within a casing closed at the ends by side plates.

As the impellers rotate, air is drawn into one side of the casing and forced out of the opposite side against the existing pressures. The differential pressure developed, therefore, depends upon the resistance of the connected system.

The Blowers, being positive displacement type, do not develop pressure within the casing but the discharge pressure depends upon the system resistance / back pressure. Effective sealing of the compressor inlet area from the discharge area is accomplished by use of very small operational clearance, eliminating the need of any internal lubrication of the lobes.

A pair of accurately machined alloy steel, hardened and ground timing gears maintain clearances between the impellers, during rotation.

The air, thus delivered, is 100% OILFREE

The pumping capacity of a lobe compressor, operating at constant speed remains relatively independent of inlet and discharge pressure variations. These Blowers are constant volume machines, which deliver a fixed discharge against the system back pressure. It is, therefore, essential to ensure that minimum pipeline restrictions, at the inlet and discharge, are imposed.

Adequate size piping and large radius bends ensure minimum line losses resulting in higher efficiency and low power consumption. Sudden change in pipeline cross section should also be avoided.

To change capacity, it is necessary either to change speed (energy saving) or vent some of the air into atmosphere (not energy saving). The air must not be recirculated from the discharge to suction as it may result in over heating.

No attempt should ever be made to control the capacity of compressor by means of throttle valves in the intake or discharge piping. This increases the power load on the motor and may seriously damage the compressor. There is an increase in the discharge air temperature due o to heat of compression.

As rule of thumb, the discharge air temperature increases at 10oC for every 0.1Kg/cm2 of ΔP above the inlet temperature.

News/Events 

  1. Difference between a Turbo and Positive Displacement Blower
  2. The Difference between Methane and Natural Gas
  3. First Dairy Biogas Project in Connecticut
  4. Does Renewable Natural Gas Have a Future in Energy?
  5. Biogas Offtake Opportunities For Digesters
  6. Wisconsin Dairy Begins Production of Renewable Natural Gas
  7. Anaerobic Digestion Sector Forming a Clearer Picture
  8. Brightmark to Expand Western New York Dairy Biogas Project
  9. Biogas - The Energy Wonder That's Under Our Noses
  10. Power Generation Achieved by a Self-Assembled Biofuel Cell
  11. Less Carbon Dioxide from Natural Gas
  12. Project Uses Renewable Electricity for RNG Production
  13. Smithfield Hog Farm Provides Natural Gas to Missouri City
  14. From Waste to Gas
  15. Gas Clash Threatens Australian Export
  16. Maximizing Opportunities of Anaerobic Digestion from Wastewater
  17. Catalyst to Speed up Conversion of Biomass to Biofuel
  18. How It Works: Ethanol
  19. Anaerobic Digestion - the Next Big Renewable Energy Source
  20. Anaerobic Additions
  21. Three (3) Tech Solutions for Modern Landfills
  22. The Costs and Benefits of Anaerobic Digesters
  23. Bacteria Farts Power Wastewater Plant in Fort Wayne
  24. Europe’s First Poultry Manure Biogas Plant
  25. Electricity Using Pig Manure
  26. $38-Million Biodigester coming to Grand Rapids
  27. Biochar Could Benefit Anaerobic Digestion of Animal Manure
  28. Getting More out of Anaerobic Digestion
  29. Biogas prevents 20 million tonnes of CO2 emissions per year
  30. Converting to green gas grid ‘could be vital’

 

For additonal reading, please visit us at: News Worthy

Difference between a Turbo and Positive Displacement Blower